Multiple active zones in hybrid QM/MM molecular dynamics simulations for large biomolecular systems.

نویسنده

  • Juan Torras
چکیده

A new QM/MM molecular dynamics approach that can deal with the dynamics of large real systems involving several simultaneous active zones is presented. Multiple, unconnected but interacting quantum regions are treated independently in an ordinary QM/MM approach but in a manner which converges to a unique simulation. The multiple active zones in the hybrid QM/MM molecular dynamics methodology (maz-QM/MM MD) involve molecular dynamics that is driving the whole simulation with several parallel executions of energy gradients within the QM/MM approach that merge into each MD step. The Ewald-summation method is used to incorporate long-range electrostatic interactions among the active zones in conjunction with periodic boundary conditions. To illustrate and ascertain capabilities and limitations, we present several benchmark calculations using this approach. Our results show that the maz-QM/MM MD method is able to provide simultaneous treatment of several active zones of very large proteins such as the Cu-4His-ΔC* cage, a self-assembly of a 24-mer cage-like protein ferritin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QM/MM methods for biomolecular systems.

Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the ...

متن کامل

fireball/amber: An Efficient Local-Orbital DFT QM/MM Method for Biomolecular Systems.

In recent years, quantum mechanics/molecular mechanics (QM/MM) methods have become an important computational tool for the study of chemical reactions and other processes in biomolecular systems. In the QM/MM technique, the active region is described by means of QM calculations, while the remainder of the system is described using a MM approach. Because of the complexity of biomolecules and the...

متن کامل

Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems.

We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. In...

متن کامل

Introduction to QM/MM simulations.

Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have become a popular tool for investigating chemical reactions in condensed phases. In QM/MM methods, the region of the system in which the chemical process takes place is treated at an appropriate level of quantum chemistry theory, while the remainder is described by a molecular mechanics force field. Within this approach, chemi...

متن کامل

Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 15  شماره 

صفحات  -

تاریخ انتشار 2015